
International Journal of Research in Advent Technology, Vol.3, No.12, December2015

E-ISSN: 2321-9637

Available online at www.ijrat.org

5

MapBuddies: Web Application for the Travelling

Salesman Problem

Kuo-pao Yang1, Ranjan Poudel2, Nishant Jha3, Grace Chenevert4

Department of Computer Science and Industrial Technology1, 2, 3, 4

Southeastern Louisiana University1, 2, 3, 4

Email: kyang@selu.edu1

Abstract- This paper discusses a case study of the development of a web application for the Travelling Salesman
Problem (TSP). The modern technologies and programming languages are used to solve the vehicle routing
problem, implement a web site, and display a routed map for users.

Index Terms- Programming Languages, Travelling Salesman Problem, Google Maps.

1. Introduction

There are many applications developed for the

Travelling Salesman Problem (TSP). The MapBuddies

development team uses modern technologies and

computer languages to implement various algorithms

and then provides the solution for the TSP problem.

The Travelling Salesman Problem [8], which

originates in the 1800’s, is a very famous path

problem. The concept for the TSP is to imagine a

travelling salesman who must start from his current

location and finish his journey at a given endpoint. He

must visit multiple other destinations before he can

reach the endpoint. The salesman’s goal is to visit

each location exactly once while minimizing his travel

distance. There are many applications to find solutions

for the Travelling Salesman Problem. One of the most

common applications is to find the shortest and the

most cost efficient path for driving a car.

There are many different methods used to solve

the Travelling Salesman Problem [9]. It has multiple

considerations to minimize [14] factors such as gas

consumed, distance travelled, and time needed. The

more objectives present in a TSP problem, the more

complicated the algorithms to solve it. In the most

common Travelling Salesman Problem, the path is

minimized by a single constraint. In the case of

driving a car, the path is typically found by

minimizing only the distance.

This project uses modern technologies and

programming languages to implement the Travelling

Salesman Problem. The TSP [2] has been attempted

and implemented many times in software. This project

provides a solution for the Travelling Salesman

Problem by coding in Ruby [1] with Ruby on Rails

[12] framework, receiving a routed map in Google

API calls, and then showing the shortest path on the

map. Javascipt, CoffeeScript, and HTML5 are used to

perform functions between user interaction and

backend code.

The Travelling Salesman Problem has been widely

studied. A variety of applications that have been

shown to exhibit TSP problems include in computer

wiring [11], wallpaper cutting [6], material handling

[15], job sequencing [7], hole punching [16],

dartboard designing [5], genome sequencing [3][4],

and vehicle routing [17].

This paper discusses a case study of the

implementation of a website that provides a solution

of the vehicle routing problem for the TSP. The web

application finds the shortest path by visiting all

destinations, which are entered by a user. The problem

is introduced, and the Brute Force Search and

Dijkstra’s algorithm are discussed. Full

implementations for both algorithms are developed

and detailed in this paper. Finally, conclusions are

presented and issues for future research are discussed.

2. The Problem

This project is a web application to find the shortest

route between multiple destinations. This web

application is called MapBuddies. A user would input

destinations to the web application. The first entered

destination is view as the starting point and the last

entered destination is the ending location. The

backend system of the MapBuddies site would then

find the coordinates for each destination from a local

database source and Google Maps API [10] calls.

After the coordinates are received, the MapBuddies

site will process the information to find the solution to

the TSP for the given destinations. After the path is

found, it will be displayed on a map to give the user

both visualization and textual representation of the

path. This basic flow of the MapBuddies site is shown

in Fig. 1.

International Journal of Research in Advent Technology, Vol.3, No.12, December2015

E-ISSN: 2321-9637

Available online at www.ijrat.org

6

The MapBuddies project has developed an

operational website. It also includes extra functionality

that allows the user to email the map showing the path

to each destination. The MapBuddies would send an

email that includes a link with the coordinates and

display the results on the map. The MapBuddies

development team has also developed multiple

methods for entering destinations. Lastly, the

destinations inputted by the user are tested for validity.

The ultimate goal of the MapBuddies site is to provide

users with an easy-to-use interface that finds the

solution for the Travelling Salesman Problem, and

presents it in an easy-to-understand and visually

pleasing method.

The Travelling Salesman Problem belongs to the

class of NP-complete problems [14]. Thus, it is

possible that the worst case running time of any

algorithms and number of destinations for the TSP

increases exponentially. To find the solution to the

Travelling Salesman Problem, the development team

has researched multiple algorithms. There are two

algorithms that have been studied and implemented:

the Brute Force Search and Dijkstra’s algorithm. For

the purpose of the MapBuddies project, which will

solve the TSP for a maximum of five destinations,

simplicity of design and implementation are greater

concerns than efficiency for many destinations.

3. Implementation

3.1. Technologies

The main languages used for development of the

MapBuddies project are Ruby and Ruby on Rails

framework. Ruby and Ruby on Rails are used for the

project because of their ease of use and increasing

popularity. As an interpreted language, Ruby is very

dynamic, which means easier to read and makes

programming simpler and faster [13]. Ruby has unique

features that can be helpful for solving problems like

the Travelling Salesman Problem. For example,

looping in Ruby through arrays and hashes, as well as

appending new items to an array, becomes very simple

tasks. Ruby on Rails is an open source web framework

and is also designed to be easy to use. With Ruby on

Rails [18], new web pages or blogs can be easily

created with just a few lines of code.

Ruby and Ruby on Rails, however, are not the

only language and framework that are used in this

project. The development team also uses JavaScript,

CoffeeScript, and HTML5 to program various

components of the project. JavaScript is a popular

scripted language that is designed to resemble C

language. CoffeeScript is a more condensed version of

JavaScript that is designed to be similar to languages

like Python. These languages are used to perform

functions between user interaction and backend code.

HTML5 is highly used in the MapBuddies site to

improve the aesthetics of the site.

To develop the MapBuddies site, the development

team researched different Interactive Development

Environments, or IDEs. RubyMine, one of the Ruby

and Ruby on Rails IDEs, was originally considered.

After further research, Aptana Studio 3 was found to

be more practical for the MapBuddies development

team. Aptana is an open source development tool for

open websites. It supports the major web browser

technology and programming languages such as

HTML5, JavaScript, Ruby, Ruby on Rails, PHP, and

Python. For source control, the MapBuddies

development team uses the free source control hosting

tool, Bitbucket. Additionally, the development team

chooses to use the Twitter Bootstrap to make the

MapBuddies site responsive and cleaner.

Further research was conducted to find the

appropriate database service and the best way to

display a path on a map. Ruby on Rails framework

comes with the default database SQLite. SQLite is a

small scale database and the most useful for testing

purposes. The development team uses MySQL as the

database for MapBuddies. MySQL is a larger scale

database that is more useful for actual implementation

and larger projects. To find and display paths on a

map, the MapBuddies development team uses Google

Fig. 1. The Basic Flow of the MapBuddies Site

Coordinates processed and
shortest path is found

Path is shown on a map

Coordinates for
destinations are

found

User inputs
destinations

International Journal of Research in Advent Technology, Vol.3, No.12, December2015

E-ISSN: 2321-9637

Available online at www.ijrat.org

7

Maps API. It has useful functions for accepting and

displaying route information. JavaScript and

CoffeeScript are used to access the Google Maps API.

3.2. Development

The Mapbuddies site allows the user to input

destinations in two different ways. The first way

would be to type in a city, address, ZIP code, or

attraction. This method would send the text to Google

Maps API to find the coordinates. The other method is

to select a ZIP code by city for destinations in the state

of Louisiana. This method uses a MySQL database

that the development team created and populated with

cities, ZIP codes, and coordinates. In Fig. 2, it shows

the two different destination input options.

After the user inputs the destinations, the

information is sent to the backend. At this point, the

TSP is solved. Both the Brute Force Search and

Djkstra’s Algorithm were considered. The Brute Force

Search finds every possible route. After it has found

each path, it compares all of them and finds the

shortest path. Dijkstra’s Algorithm starts at a given

location and travels to the closest destination to itself.

It does this at each destination until it has visited all

stops exactly once. After comparing performance, the

development team for MapBuddies decided to emulate

Dijkstra’s Algorithm. Fig. 3 shows Ruby based pseudo

code of this algorithm for a round trip. For round trips,

the starting and ending points are the same.

To achieve an optimal display of this information

using Google Maps API, the actual driving distance

between every pair of destinations needs to be found.

Each pair would be an API call to Google Maps. With

up to five destinations, it means up to twenty API

calls. With Google Maps API calls, it would

automatically calculate the solution to the TSP with a

single API call. The development team found Google

Maps API has a limit on the number of calls that can

be placed during a 24 hour period and per second. Due

Fig. 2. Two Different Methods of Entering Destinations

Fig. 3. Dijkstra’s Algorithm for the Travelling

Salesman Problem

distance_hash = {a: [[b, x],[c, x],[d, x],[e, x]], #hash contains distance

 b: [[a, x],[c, x],[d, x],[e, x]], #between every 2 points

 c: [[a, x],[b, x],[d, x],[e, x]],

 d: [[a, x],[b, x],[c, x],[e, x]],

 e: [[a, x],[b, x],[c, x],[d, x]]

 }

path = [a] # ’a’ is the first destination visited

total_dist = 0 #This will hold the total size of the path

next_city = a #This sets the next key in the hash to be examined

while(number of elements in path is less than number of cities)

 distance_hash[next_city].each do |to, distance| #increment

 min_dist = 9999999 #through hash

 if(to not in path)

 if(distance < min_dist){

 min_dist = distance

 next_city = to #find closest

 end

 total_dist = total_dist + min_dist

 path << next_city #add visited destination to path

 end

 end

end

path << a #return to original point (round trip)

distance_hash[next_city].each do |to, distance| #add distance to total

 if(to == next_city)

 total_dist = total_dist + distance

 end

end

puts path

puts total_dist

International Journal of Research in Advent Technology, Vol.3, No.12, December2015

E-ISSN: 2321-9637

Available online at www.ijrat.org

8

to the constraint on the number of API calls, the delay

is caused by calling the API excess times. Therefore,

the MapBuddies development team implements the

TSP solution in house. Fig. 4 shows a mapped solution

for the Travelling Salesman Problem.

To allow the user to email map information, the

MapBuddies team develops the Simple Mail Transfer

Protocol (SMTP) plugin for Ruby on Rails. Using this

plugin, the development team is able to allow the user

to enter an email address and then send the routed map

information. After the user types an email address into

the appropriate box, the MapBuddies site then verifies

the email address. Once the address is verified, the

information is sent in the form of a link via an email

message. If the link is followed, the user will be

directed to the MapBuddies site and the link will

populate the map with the necessary information.

4. Conclusion

The team of MapBuddies has successfully developed a

web application for the Travelling Salesman Problem.

The modern technologies and programming languages

are used to solve the vehicle routing problem,

implement a web site, and display a map for users.

The MapBuddies development team uses Ruby, Ruby

on Rails, Google Maps API, CoffeeScript, JavaScript,

and HTML5 for the vehicle routing problem. This

project implements for the Travelling Salesman

Problem by coding in Ruby with Ruby on Rails

framework, receiving a routed map in Google Maps

API calls, and then displaying a shortest path on a web

browser. JavaScript and CoffeeScript are used to

access the Google Maps API. HTML5 is used to

improve the aesthetics of the site.

In the future, the MapBuddies development team

will study and implement more algorithms for the TSP

problems and provide more destinations for the NP-

complete problems.

REFERENCES

[1] Baas, B., “Ruby in the CS Curriculum,” Journal of
Computing Sciences in Colleges 17(5): 95-103,
April, 2002.

[2] Bellman, R., “Dynamic Programming Treatment
of the Travelling Salesman Problem,” Journal of
the ACM 9(1): 61-63, 1962.

[3] Ben-Dor, A. and Chor, B., “On Constructing
Radiation Hybrid Maps,” Journal of
Computational Biology 4, 517-533, 1997.

[4] Ben-Dor, A., Chor, B., and Pelleg, D., “RHO-
Radiation Hybrid Ordering,” Genome Research
10, 365-378, 2000.

[5] Eiselt, H.A., and Laporte, G., “A Combinatorial
Optimization Problem Arising in Dartboard
Design,” Journal of the Operational Research
Society 42, 113-118, 1991.

[6] Garfinkel, R.S., “Minimizing wallpaper waste, Part
I: A class of traveling salesman problems,”
Operations Research 25, 741-751, 1977.

[7] Gilmore, P.C., and Gomory, R.E., “Sequencing a
One State-Variable Machine: A solvable case of
the traveling salesman problem,” Operations
Research 12, 655-679, 1964.

[8] Hoffman, K., Padberg, M., and Rinaldi, G.,
“Traveling Salesman Problem,” Encyclopedia of
Operations Research and Management Science,
1573-1578, 2013.

[9] Kai, A. and Mingrui, X., “A Simple Algorithm for

Fig. 4. A Mapped Solution for the Travelling Salesman Problem

International Journal of Research in Advent Technology, Vol.3, No.12, December2015

E-ISSN: 2321-9637

Available online at www.ijrat.org

9

Solving Travelling Salesman Problem,”
Proceeding of Instrumentation, Measurement,
Computer, Communication and Control
(IMCCC), Harbin, China 931-35, December,
2012.

[10] Konarski, M. and Zabierowski, W., “Using
Google Maps API along with Technology .NET,”
Proceeding of Modern Problems of Radio
Engineering, Telecommunications and Computer
Science (TCSET), Lviv-Slavske, Ukraine, 180-
82, February, 2010.

[11] Lenstra, J.K., Rinnooy Kan, A.H.G., “Some
Simple Applications of the Travelling Salesman
Problem,” Operational Research Quarterly 26,
717-733, 1975.

[12] Lerner, R., “At the Forge: Ruby on Rails,” Linux
Journal, Issue#138, October 2005. DOA:
http://www.linuxjournal.com/article/8433

[13] Paulson, L., “Developers Shift to Dynamic
Programming Languages,” Computer 40(2): 12-
15, February, 2007.

[14] Perez, D., Prowley, E., Whitehouse, D.,
Samothrakis, S., Lucas, S., and Cowling, P. I.,
“The 2013 Multi-objective Physical Travelling
Salesman Problem Competition,” 2014 IEEE
Congress on Evolutionary Computation (CEC),
Beijing, China, 2314-2321, July, 2014.

[15] Ratliff, H.D. and Rosenthal, A.S., "Order-Picking
in a Rectangular Warehouse: A Solvable Case for
the Traveling Salesman Problem," PDRC Report
Series No. 81-10. Georgia Institute of
Technology, Atlanta, Georgia, 1981.

[16] Reinelt, G., “The Traveling Salesman:
Computational Solutions for TSP Applications,”
Springer-Verlag, Berlin, 1994.

[17] Toth, P. and Vigo, D., “The Vehicle Routing
Problem,” SIAM, Philadelphia, USA, 2001.

[18] Viswanathan, V., “Rapid Web Application
Development: A Ruby on Rails Tutorial,” IEEE
Software, 25(6): 98-106, November, 2008.

